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Abstract the analysis becomes more complicated, in
particular when a lot of devices is present in the
Microstrip lines are widely used in microwave same environment. The presence of these
and millimeter-wave integrated circuif4,?]. In impulsive fields provides a gat anount of e.m.
this contribution we present an accurate analysislisturbance against which the microstrip should
of the e.m. near and far field radiated by abe immune. With that the analysis of the
microstrip line. The e.m. analysis is developedmicrostrip susceptibility becomes anpartant
by a novel method, the Transmission Line requirement for its design. In this contribution
Matrix Integral Equation (TLMIE) method. This we present an accurate analysis of the e.m.
method combines the advantages of the TLMradiation properties of a loop microstrip line.
method, which is very flexible for the modeling The analysis is developed by means of the novel
of general structures with arbitrary shapes [3,4],hybrid Transmission Line Matrix-Integral
and the advantages of the integral equatiorEquation (TLMIE) method. The TLMIE method
(I.LE.) method, which allows to incorpate the has been proven to be a powerful tool for
treatment of large free space regions. solving EMC, EMI and general radiating
problems[7]. Due to their high flexibility, the
TLM/FDTD methods are excellently suited for
Introduction field problems in structures of nearly arbitrary
geometry[3,4. On the other hand, they are
Planar transmission structures are widely used isuitable for the analysis of large free space
microwave, millineter-wave circuits and high- regions because of the great waste of orgnin
speed digital circuits. These are, for example;the computational algorithm. The integral
striplines, microstrips and coplanar waveguides,equation (IE) method permits us to incorporate
[1,7. Spurious radiation may occur at the treatment of large free space regions with
discontinuities of the microstrip lines. Moreover, very high efficiency, because it reduces the
it is a common situation that they can interfere complexity of a field problem by one dimension
with other devices or lines placed in the same[5 6. The integral equation method in
environment, for example gted in the same connection with the mbbd of moments
dielectric substrate. To thipurpose, the e.m approach is very powerful for the solution of a
investigation is particularly important in the time great variety ofproblems. However it requires
domain, where we have transient phenomena ifor each particular class of structures a special
response to an impulse etation. In this case analytical preprocessing of the problem. We
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have developed a novel hybrid methodS. This field is calculated by the TLM algorithm.
combining the advantages of a three- Another incident field E"%(r,t) and"'H"(r,t)
dimensional space discretization hmd, such is coming from the external free ae region.
as the TLM method, and the advantages of theBy applying the continuity of the tangential
I.E. method. By embedding the e.m. structuresfields on the interface, we derive the following
into discretized subdomains, very generalElectric Field Integral Equation (EFIE}J), and
geometric structures may be treatedhaiit the Magnetic Field Integral Equation (MFIE),
special analytic preprocessing. As an examplgl) as in[6]:

we show how the TLMIE method can predict . ‘

the e.m. near field and far field of typical and E,(r,t)=""E"™(r.t)+E ([ t)+"E™(t) (1)

t

complex radiating structures, involving two or _TM inc . fary inc

more radiating substructures. In the TLMIE Ht(r’t)_ NHr (r ’t)+Ht( ’t)”" (t) (2)
method the entire sge of theproblem is

subdivided into subregions to which the The fieldsE(r.t), Hi(r.t) represent the unknown
different methods are applied. At the boundarytotal fields at the interface. The fields'(r,t),
interfaces of theseubregions the transverse H:'(r,t) represent the fields radiatdtbm the
e.m. field is expanded by means of subdomainnterface. The radiated field is derived a$Gr]
basis functions, as in the TLM or the FDTD from the total tangential fields via free space
scheme [3,4. The expanded fields on the Green'’s functions. The equations (1) and (2) can
interfaces are then related to each other by th&e written in a compact matriform. In the
Green’s function. Using the continuity of the following we refer only to the electric field;
fields we provide the appropte set of EFIE analogous considerations also hold for the
and MFIE integral equations. These integralmagnetic field, as if6,7]. For eq. (1) we have:
equations are then discretized following the ML e e o

method of moments approach. We derive aE("t)=""H (r )+ "E 1) + ®3)
matrix system whose solution provides the - , , ~ , ,
unknown expanding coefficients of the total Co(rrt=1)E (", 7)+Cy(rr' t-tH '.7)
tangential field. The present method can be used

for the analysis of general radiation problems. Where the matriceg,, c, represent operators
involving integral and differential operations,

Theory according to the form of the raded field of
equations (1) and (2). Theestorsr andr’ are
We define a closed region which contains athe destination and source position vectors,
structure with complex geometry and the openrespectively. The points’ are defined on the
free-space regiorusrounding this closed region. radiating interface. The integral equatiga),
These two regions are separated by an arbitrarpas a time-retardation feature=(r-r’)/c that
surface S. We define the closed region as thedllows us to solve them in an iterative way.
TLM region because it is discretized by the Since the variable is always less than t, the
TLM method. The TLM-region is coupled to the unknown fieldE;(r,t) andHy(r,t) is the sum of
open region by means of the Green’s function inthe known incident field and an integral that is
the time domain. Inside the TLM-region there also known from the past history of the same
are sources. The field which is excited by thefields. With that we derive the basis for solving
given sources produces an incident tangentiaintegral equations by iterative methods,7].
field ""ME"(r,t) and"™"MH/"(r t) at the interfface Now we discretize the IE by expanding the
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tangential fields with an appropte set of Example

functions: _ _ o _
We consider a microstrip line having the form of

Mo N a loop as indiated in Figl. We excite by a z-

Et(r’t):; Ey(F ot )Pl =T )T(t=t,) 4 directed electric pulse of gaussian-type, with
- amplitude E. The ecitation is placed at the

In eq.(4)® andW are surface pulsieinctions of ~ Poundary, as degied in Fig.1.

rectangular type, being equal to unftyr r on

the elementary surface centredrat P andQ .. .. ... ... . ... _

are time-pulse functions, being equal to unity for | - . _ - e St

t in the time interval centered at . We Z e
considerM elementary subdomains andtime i 4 1

steps.E, andHy are the unknown expanding | 1 . |d=0.5¢cm

coefficients. Now we apply the Method of M\’ x4 \'\K
Moments, as in[6]. For obtaining a matrix
system we give numbers to the cooates of t— I h
the fields:m, m’, m” are numbers of the discrete

coordimatesr, ryy, rm @andn, n’, n” are numbers

of the discrete time steps tv, t. Now, by  Fig1. The analized microstrip line. Paraters:

inserting eq. (4) in (3) and taking the symmetric 3-0 5 mm, b=0.55 mm, t=2%5m, h=125 um,
product with the weighting functions as in s=75um, &=10.

[6,7],we derive:

E, (m, n):TLMEHC( m 1+ ferHC( m h+ We place théront plqne of fthe microstrip a_t the

Wi plane z=0. In Fig.1 is depicted tharsunding
Z{~8E(m’m; - H)E,(m fH+ imaginary rectangularbox where the two

% = methods are atched. Theupper plane of the

+ KRE(m, ni: AH 5 surface $is placed at a distance of 250 um
n (m - 1) ‘”( " of ® from the plane z=0. The solution of the problem

The equation (5) constitutes an equation Systenr.;oinsists to find out the distribution of the

whose solution permits us to recover iteratively @ngential field on the surfaces of interfaces.
the expanding coefficients of the field. The Once this distribution is known we can evaluate

matricies K involve integral and differential the surrounding field dactly by the Green's

operations. The same eq.(5) shows that, fofunction.
every cell of number m, the expanding
coefficients at time n can be directly computed

from the incident field at the same time and the

past history of the tangential field in all the cells.

This process is called marching-on-in-time
method[6,7]. Moreover, the total tangental field

provide the eact value of theboundary

condition for the TLM algorithm.
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Fig.4. Time evolution of thelectric field & by

Fig.2. Time evolution of thelectric field &k by the TLMIE method. at z=2.5 mm

the TLMIE and TLM method at z=12&n.

In Fig.3 we report the same comparison in the
E 1 o frequency domain, after a FFT. In both cases we
(=) — observe a very good agreement. Then we

o1 W] A\ _ Tl_ll;'\gri evaluate the the far field with the TLMIE
\ method, outside the imaginary surrounding box.

0,01 Usually the evaluation of the far field is very

’ \/\ inaccurate by thpure TLM-FDTD methods. In
/\\\_& Fig.4 we reporte the evaluation of thefleld at
T z=2.5 mm, by the TLMIE method.
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f(MHz) We presented the development of the novel
hybrid Transmission Line Matrix-Integral
Fig.3. Frequency evolution of tledectric field  Equation (TLMIE) method combining the
Ex by the TLMIE and TLM method at z=125 advantages of both methods. The TLM method
um. is very flexible for modeling general structures
) _ _ with arbitrary shapes. The Integral Equation
We calculate the radiated near field at the pointyethod allows us to incorpate the treatment of
z=125pum, in the normal décton, by the hybrid  |arge free space regions. The presenthoebtis
TLMIE method. Then, for a self consistent applied for anaccurate analysis and prediction
comparison, we calcale the same field by the of the e.m. field of a microstrip line. The near
pure TLM method. This is possible by enlarging field results which are calculated by the TLMIE
the 3-D spatial domain of the TLM method and method are compared with results catet! by
by applying absorbing boundary conditions. Thethe pure TLM method, showing very good
dimension of the TLM cell is dI=2Bm. In Fig.2  agreement.
we compare the .Efield (normalized with
respect to B, evaluated by the TLMIE method
and by the pure TLM method, resgively, in
the time domain.
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