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Abstract

Microstrip lines are widely used in microwave
and millimeter-wave integrated circuits [1,2]. In
this contribution we present an accurate analysis
of the e.m. near and far field radiated by a
microstrip line. The e.m. analysis is developed
by a novel method, the Transmission Line
Matrix Integral Equation (TLMIE) method. This
method combines the advantages of the TLM
method, which is very flexible for the modeling
of general structures with arbitrary shapes [3,4],
and the advantages of the integral equation
(I.E.) method, which allows to incorporate the
treatment of large free space regions.

Introduction

Planar transmission structures are widely used in
microwave, millimeter-wave circuits and high-
speed digital circuits. These are, for example,
striplines, microstrips and coplanar waveguides,
[1,2]. Spurious radiation may occur at
discontinuities of the microstrip lines. Moreover,
it is a common situation that they can interfere
with other devices or lines placed in the same
environment, for example placed in the same
dielectric substrate. To this purpose, the e.m
investigation is particularly important in the time
domain, where we have transient phenomena in
response to an impulse excitation. In this case

the analysis becomes more complicated, in
particular when a lot of devices is present in the
same environment. The presence of these
impulsive fields provides a great amount of e.m.
disturbance against which the microstrip should
be immune. With that the analysis of the
microstrip susceptibility becomes an important
requirement for its design. In this contribution
we present an accurate analysis of the e.m.
radiation properties of a loop microstrip line.
The analysis is developed by means of the novel
hybrid Transmission Line Matrix-Integral
Equation (TLMIE) method. The TLMIE method
has been proven to be a powerful tool for
solving EMC, EMI and general radiating
problems [7]. Due to their high flexibility, the
TLM/FDTD methods are excellently suited for
field problems in structures of nearly arbitrary
geometry [3,4]. On the other hand, they are
suitable for the analysis of large free space
regions because of the great waste of memory in
the computational algorithm. The integral
equation (IE) method permits us to incorporate
the treatment of large free space regions with
very high efficiency, because it reduces the
complexity of a field problem by one dimension
[5,6]. The integral equation method in
connection with the method of moments
approach is very powerful for the solution of a
great variety of problems. However it requires
for each particular class of structures a special
analytical preprocessing of the problem. We
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have developed a novel hybrid method
combining the advantages of a three-
dimensional space discretization  method, such
as the TLM method, and the advantages of the
I.E. method. By embedding the e.m. structures
into discretized subdomains, very general
geometric structures may be treated without
special analytic preprocessing. As an example
we show how the TLMIE method can predict
the e.m. near field and far field of typical and
complex radiating structures, involving two or
more radiating substructures. In the TLMIE
method the entire space of the problem is
subdivided into subregions to which the
different methods are applied. At the boundary
interfaces of these subregions the transverse
e.m. field is expanded by means of subdomain
basis functions, as in the TLM or the FDTD
scheme [3,4]. The expanded fields on the
interfaces are then related to each other by the
Green’s function. Using the continuity of the
fields we provide the appropriate set of EFIE
and MFIE integral equations. These integral
equations are then discretized following the
method of moments approach. We derive a
matrix system whose solution provides the
unknown expanding coefficients of the total
tangential field. The present method can be used
for the analysis of general radiation problems.

Theory

We define a closed region which contains a
structure with complex geometry and the open
free-space region surrounding this closed region.
These two regions are separated by an arbitrary
surface S. We define the closed region as the
TLM region because it is discretized by the
TLM method. The TLM-region is coupled to the
open region by means of the Green’s function in
the time domain. Inside the TLM-region there
are sources. The field which is excited by the
given sources produces an incident tangential
field TLMEt

inc(r,t) and TLMH t
inc(r,t) at the interface

S. This field is calculated by the TLM algorithm.
Another incident field fsrEt

inc(r,t) and fsrH t
inc(r,t)

is coming from the external free space region.
By applying the continuity of the tangential
fields on the interface, we derive the following
Electric Field Integral Equation (EFIE), (1), and
the Magnetic Field Integral Equation (MFIE),
(1) as in [6]:

( ) ( ) ( ) ( )E r E r E r E rt
TLM inc r fsr inct t t t

t t t
, , , ,= + + (1)

( ) ( ) ( ) ( )H r H r H r H rt
TLM inc r fsr inct t t t

t t t
, , , ,= + + (2)

The fields Et(r,t), H t(r,t) represent the unknown
total fields at the interface. The fields Et

r(r,t),
H t

r(r,t) represent the fields radiated from the
interface. The radiated field is derived as in [6,7]
from the total tangential fields via free space
Green’s functions. The equations (1) and (2) can
be written in a compact matrix form. In the
following we refer only to the electric field;
analogous considerations also hold for the
magnetic field, as in [6,7]. For eq. (1) we have:

( ) ( )

( ) ( ) ( ) ( )

E r H r E r

C r r E r C r r H r

t
TLM inc fsr inc

e h

t t t

t t

t t

t t

( , ) , , ( )

~ , , , ~ , , ,

= +

′ − ′ + ′ − ′

+  3

τ τ τ τ

where the matrices ~Ce , ~
Ch  represent operators

involving integral and differential operations,
according to the form of the radiated field of
equations (1) and (2). The vectors r and r ’ are
the destination and source position vectors,
respectively. The points r ’ are defined on the
radiating interface. The integral equation (3),
has a time-retardation feature τ=(r-r´)/c that
allows us to solve them in an iterative way.
Since the variableτ  is always less than t, the
unknown field Et(r,t) and H t(r,t) is the sum of
the known incident field and an integral that is
also known from the past history of the same
fields. With that we derive the basis for solving
integral equations by iterative methods, [6,7].
Now we discretize the IE by expanding the
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tangential fields with an appropriate set of
functions:

( ) ( ) ( ) ( )E r E r r rt
m

M

n

N

m n m nt t P T t t, ,= − −
′= ′=

′ ′ ′ ′∑ ∑
1 0

ϕ  (4)

In eq.(4) Φ and Ψ are surface pulse functions of
rectangular type, being equal to unity for r on
the elementary surface centred at rm .́ P and Q
are time-pulse functions, being equal to unity for
t in the time interval centered at tn´.. We
consider M elementary subdomains and N time
steps. Eϕ and Hψ are the unknown expanding
coefficients. Now we apply the Method of
Moments, as in [6]. For obtaining a matrix
system we give numbers to the coordinates of
the fields: m, m’, m’’ are numbers of the discrete
coordinates r, rm’, rm’’  and n, n’, n’’ are numbers
of the discrete time steps t, tn’, tn’’ . Now, by
inserting eq. (4) in (3) and taking the symmetric
product with the weighting functions as in
[6,7],we derive:

( ) ( ) ( )

( ) ( ){
( ) ( ) }

E E E

K E

K H

ϕ

ϕ
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m n m n m n
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∑ ∑
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5

The equation (5) constitutes an equation system
whose solution permits us to recover iteratively
the expanding coefficients of the field. The
matricies K involve integral and differential
operations. The same eq.(5) shows that, for
every cell of number m, the expanding
coefficients at time n can be directly computed
from the incident field at the same time and the
past history of the tangential field in all the cells.
This process is called marching-on-in-time
method [6,7]. Moreover, the total tangental field
provide the exact value of the boundary
condition for the TLM algorithm.

Example

We consider a microstrip line having the form of
a loop as indicated in Fig.1. We excite by a z-
directed electric pulse of gaussian-type, with
amplitude E0. The ecitation is placed at the
boundary, as depicted in Fig.1.

Fig1. The analized microstrip line. Parameters:
a=0.5 mm, b=0.55 mm, t=25 µm, h=125 µm,
s=75 µm, εr=10.

We place the front plane of the microstrip at the
plane z=0. In Fig.1 is depicted the surrounding
imaginary rectangular box where the two
methods are matched. The upper plane of the
surface S1 is placed at a distance of z=250 µm
from the plane z=0. The solution of the problem
coinsists to find out the distribution of the
tangential field on the surfaces of interfaces.
Once this distribution is known we can evaluate
the surrounding field directly by the Green’s
function.
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Fig.2. Time evolution of the electric field Ex by
the TLMIE and TLM method at z=125 µm.
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Fig.3. Frequency evolution of the electric field
Ex by the TLMIE and TLM method at z=125
µm.

We calculate the radiated near field at the point
z=125 µm, in the normal direction, by the hybrid
TLMIE method. Then, for a self consistent
comparison, we calculate the same field by the
pure TLM method. This is possible by enlarging
the 3-D spatial domain of the TLM method and
by applying absorbing boundary conditions. The
dimension of the TLM cell is dl=25 µm. In Fig.2
we compare the Ex field (normalized with
respect to E0), evaluated by the TLMIE method
and by the pure TLM method, respectively, in
the time domain.
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Fig.4. Time evolution of the electric field Ex by
the TLMIE method, at z=2.5 mm.

In Fig.3 we report the same comparison in the
frequency domain, after a FFT. In both cases we
observe a very good agreement. Then we
evaluate the the far field with the TLMIE
method, outside the imaginary surrounding box.
Usually the evaluation of the far field is very
inaccurate by the pure TLM-FDTD methods. In
Fig.4 we reporte the evaluation of the Ex field at
z=2.5 mm, by the TLMIE method.

Conclusions

We presented the development of the novel
hybrid Transmission Line Matrix-Integral
Equation (TLMIE) method combining the
advantages of both methods. The TLM method
is very flexible for modeling general structures
with arbitrary shapes. The Integral Equation
method allows us to incorporate the treatment of
large free space regions. The present method is
applied for an accurate analysis and prediction
of the e.m. field of a microstrip line. The near
field results which are calculated by the TLMIE
method are compared with results calculated by
the pure TLM method, showing very good
agreement.
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